Entidad Tipo entidad ¿Lidera el proyecto? Acrónimo Título Programa SubPrograma Área SubÁrea Convocatoria Tipo Proyecto Fecha desde Fecha hasta Nº socios internacionales Presupuesto total RIS 3 Tecnología base Link a ficha Resumen del proyecto ¿Lanza convocatoria cascade funding?
A&B LABORATORIOS DE BIOTECNOLOGÍA, S.A.U.PymeNOCERTIFAIAgile conformance assessment for cybersecurity CERTIFication enhanced by Artificial IntelligenceHORIZON EUROPEGlobal Challenges and European Industrial CompetitivenessCivil Security for SocietyIncreased cybersecurity2022IA01/09/202331/08/2026114.802.650€OtroSelecciona una opciónhttps://cordis.europa.eu/project/id/101120606According to the EU Cyber Resilience Act, “hardware and software products are increasingly subject to successful cyberattacks, leading to an estimated global annual cost of cybercrime of EUR 5.5 trillion by 2021”. This is due to a low level of cybersecurity, reflected by widespread vulnerabilities and inadequate approaches for identifying and mitigating the rapidly and constantly evolving cyber threats and vulnerabilities, as well as ensuring continuous compliance with regulations, industry standards, and best practices. To reduce the impact of cyberattacks and increase the resilience of digital technologies, it is essential to assess the conformity to security standards of ICT products, services, and processes throughout their life cycle. However, the traditional conformity assessment process is predominantly a static and expensive one-time assurance activity that does not cater to the needs of agile product delivery, which promotes continuous product updates and upgrades, and often changes in requirements. Each such update opens doors to product vulnerabilities, and consequently poses cyber risks for product users and companies’ reputation. To avoid these issues, it is essential to enable a partial and continuous lean re-certification of ICT products, services, and processes, to empower manufacturers to prevent, detect, counter and quickly respond to cyber threats. In response to these challenges, the CERTIFAI project will develop an open software framework for cost-effective AI-driven continuous assessment and (re-)certification of ICT products and services, paving the way for a more secure and trustworthy EU’s digital world. Building on the EU Cybersecurity Act, CERTIFAI will leverage the established cybersecurity requirements, standards, and technical specifications to deliver an efficient approach for ensuring that a product, once certified, will continue to be compliant with relevant standards throughout its life cycle.No
AAF, S.A.PymeNOWEDISTRICTSmart and local reneWable Energy DISTRICT heating and cooling solutions for sustainable livingHORIZON 2020 (2014-2020)H2020 - SOCIETAL CHALLENGESH2020 - SECURE, CLEAN AND EFFICIENT ENERGYEnergy Efficiency2019IA01/10/201931/03/20232319.273.573€Hábitat urbano
ABEKI COMPOSITES, S.L.PymeNOAEGIRDigitAl and physical incrEmental renovation packaGes/systems enhancing envIronmental and energetic behaviour and use of ResourcesHORIZON EUROPEGlobal Challenges and European Industrial CompetitivenessClimate, Energy and MobilityENE-Built4People - People-centric sustainable built environment partnership2021IA01/10/202230/09/20263014.195.599€Ciudades sosteniblesSelecciona una opciónhttps://cordis.europa.eu/project/id/101079961AEGIR’s main objective is to demonstrate a scalable, industrialised, smart, non-intrusive, quick, and affordable four-packaged renovation solution to boost the take up of deep retrofitting achieving nearly zerAEGIR main objective is to demonstrate a physical and digital sustainable framework that boosts the take up of deep retrofitting achieving nearly zero energy buildings. This approach is supported by (i) innovative, industrialized, high performance and non-intrusive multifunctional plug-and-play envelope solutions to increase the use of locally deployed renewable technologies. These solutions can also be modulated depending on the requirements of the target buildings. (ii) A digital ecosystem of services to improve the whole construction workflow (from design, manufacturing, construction, and operation) reducing costs with a sustainable approach. And (iii) a socio-economic model providing financial schemes and business models at building scale. To demonstrate these objectives the project will deploy all these solutions in four demos (Spain, France, Denmark, and Romania) mixing the retrofitting actions which will use the solutions in four different climates. The demos combine different building typologies (multi-family buildings, educational buildings, offices, and single-family buildings) to proof the concept in buildings and tenants with different requirements. One of the demos (Denmark) is social housing so the intention of the project is to demonstrate that these solutions are feasible for the more demanding public. A second demo is a public school to demonstrate the improved air quality and comfort provided by the solution to solve many of the air quality/ventilation problems in this type of buildings. The project involves all the actors from the construction and energy management value chain with local and international SMEs, large companies, public authorities. Local and international clusters are also included to verify the developments at European level.No
ABERE ZERBITZU TEKNIKOAK KOOPERATIBA SOZIETATEAGran EmpresaNOClimateSmartAdvisorsClimateSmartAdvisors: Connecting and mobilizing the EU agricultural advisory community to support the transition to Climate Smart FarmingHORIZON EUROPEGlobal Challenges and European Industrial CompetitivenessFood, Bioeconomy Natural Resources, Agriculture and EnvironmentLand, ocean and water for climate action2022CSA01/04/202331/03/20307220.487.751€Alimentación saludableSelecciona una opciónhttps://cordis.europa.eu/project/id/101084179ClimateSmartAdvisors is a pan-European multi-actor network covering 27 countries. Its aim is to boost the EU agricultural advisory community, leading to an acceleration of the adoption of climate smart (CS) farming practices by the wider farming community within and across EU AKISs. To reach this objective, ClimateSmartAdvisors focuses on the crucial role of advisors in the development and dissemination of CS innovations and practices. The project will organize activities focusing on strengthening the advisors’ capacity in providing CS advice and boosting the advisors’ role in the transition towards CS farming through their involvement in innovation projects, CS-AKIS, and EU projects and initiatives. A number of complementary activities are developed to strengthen the CS advisory capacity of the EU advisory community: 1) an EU-wide network of 260 advisory Communities of Practice (CoP) to support the development of 1500 advisors will form the core of CS knowledge exchange; 2) 140 advisors will receive expert training on selected topics, relevant for their context and for facilitating a CoP; 3) CoPs will internationally exchange knowledge on 12 thematic areas; 4) a knowledge repository will provide advisors with CS tools, practices and approaches developed in the ClimateFarmDemo project and further expanded in ClimateSmartAdvisors, 5) monitoring, evaluation and learning activities will capitalize lessons learned in and outside the project. Activities to boost the advisors role in the CS transition include: 1) connecting to local and EU (multi-actor innovation) projects, initiatives, AKIS actors, and policy makers to clarify and address joint needs, challenges and lessons learned, 2) the set-up of Co-Design Innovation Experiments to learn on how to strengthen the advisors’ role in innovation processes. Finally, to accelerate the wide spread of results, an ambitious dissemination, exploitation and communication strategy will be deployed at EU and national levels.No
ACERÍA DE ALAVA, S.A.PymeNOCOGNIPLANTCognitive platform to enhance 360º performance and sustainaibility of the EU process industryHORIZON 2020 (2014-2020)H2020 - INDUSTRIAL LEADERSHIPH2020 - NMBPPPP. Sustainable Process Industry (SPIRE)2019IA01/10/201931/03/2023148.562.917€Fabricación avanzada
ACHUCARRO BASQUE CENTER FOR NEUROSCIENCE FUNDAZIOABERCNONeuroExcellModulation of neuronal Signaling by Brain Extracellular Space Structure and DynamicsHORIZON EUROPEExcellent ScienceMarie Sktodowska-Curie Actions (MSCA)MSCA Postdoctoral Fellowships2021MSCA01/09/202331/08/20252181.152€Salud personalizadaSelecciona una opciónhttps://cordis.europa.eu/project/id/101067304NeuroExcell aims to reveal physiological roles of the ECS structure and dynamics in directly regulating neuronal signalling, by taking advantage of the innovative new Super-resolution Shadow Imaging (SUSHI) technique. It will elucidate the nanoscale structure of the ECS of entire mouse brain hemispheres at different planes of the brain. Inherently, it will reveal simultaneously all cells as analyzable shadows what will provide unprecedented ECS maps, to complement general existing cellular maps. The results will further clarify the distribution and duration of structural ECS dynamics across areas, and will disclose the relation between ECS structure, dynamics and protein distribution in the extracellular matrix. Investigating this in live tissue slices will further allow direct visualization and analysis of diffusional processes what will help to disclose the physiological roles of the ECS.The fundamental nature of the results, and the advanced technological framework, will be of fundamental interest for neurophysiologists, glia cell biologists, and glymphatic system researchers, among others. NeuroExcell will be carried out in a multidisciplinary environment involving advanced fluorescence imaging methods, classic electrophysiological techniques, computational modelling, biophysical theory and biochemistry. For the project I will join an emerging neuroscience institute where I will further enhance and diversify my professional competences through advanced training and quality research, adding to my development toward becoming an independent research group leader.No
ACHUCARRO BASQUE CENTER FOR NEUROSCIENCE FUNDAZIOABERCNONewron-TBINeurogenesis-related changes in hippocampal new neurons and circuits after traumatic brain injuryHORIZON 2020 (2014-2020)H2020 - EXCELLENT SCIENCEH2020 - MARIE SKTODOWSKA-CURIE ACTIONSIndividual Fellowships (IF)2017MSCA01/04/201831/03/2020158.122€----------------------------------------------------------------------------
ACHUCARRO BASQUE CENTER FOR NEUROSCIENCE FUNDAZIOABERCNOStarTickingThe early ticking of the central circadian pacemaker: when and howHORIZON EUROPEExcellent ScienceEuropean Research Council (ERC)ERC Consolidator Grant2022ERC01/01/202431/12/202811.955.875€Salud personalizadaSelecciona una opciónhttps://cordis.europa.eu/project/id/101088375The 24-h (circadian) timing system develops during the perinatal period and rules our physiology later in life. It has the essential task of anticipating daily recurring changes in the environment (day/night) to find the best time for each molecular and cellular process. It is organised hierarchically, with a master pacemaker in the hypothalamic suprachiasmatic nucleus (SCN), which is able to perceive environmental light and tell the body what time is it. Our modern 24/7 lifestyle favours a disruptive environment for the circadian system, which is especially negative during pregnancy. We have found, in mice and pre-term infants, that when mothers are exposed to glucocorticoids (GCs) at the wrong time of day, the offspring show behaviour disorders later in life. Our mechanistic findings showed for the first time, a role of the foetal clock before birth, challenging the view on the clock being immature and non-functional.StarTicking proposes to answer a long-standing question in the field: When and how the circadian clock starts ticking. With a multidisciplinary and integrated approach, we will go beyond the state-of-the-art to understand mechanistically the development of the central circadian pacemaker in mice and humans. We will investigate: 1) How the SCN forms by a detailed assessment of the developmental trajectory of the mouse SCN with single cell resolution. 2) When the SCN becomes functional by testing a yet unexplored player: Astrocytes as drivers of the gain of functionality of the mouse SCN.3) What the influence of the early environment on the human SCN maturation is. The generation of a human SCN organoid will allow us to test maternal signals in vitro with high-throughput. We will link mechanistic findings to the development of SCN-driven rhythms in a cohort of pre-term babies. StarTicking will provide ground-breaking mechanistic evidence and valuable knowledge to alleviate the behavioural consequences of the circadian disruption early in lifeNo
ADWEN OFFSHORE, S.L.PymeNOPROMOTIONPROMOTioN - Progress on Meshed HVDC Offshore Transmission NetworksHORIZON 2020 (2014-2020)H2020 - SOCIETAL CHALLENGESH2020 - SECURE, CLEAN AND EFFICIENT ENERGYCompetitive Low Carbon Energy2015IA01/01/201631/12/20193851.685.330€Energía
ADWEN OFFSHORE, S.L.PymeNOROMEOReliable OM decision tools and strategies for high LCoE reduction on Offshore windHORIZON 2020 (2014-2020)H2020 - SOCIETAL CHALLENGESH2020 - SECURE, CLEAN AND EFFICIENT ENERGYCompetitive Low Carbon Energy2016IA01/06/201731/05/2022109.999.813€Energía
Entidad Tipo entidad ¿Lidera el proyecto? Acrónimo Título Programa SubPrograma Área SubÁrea Convocatoria Tipo Proyecto Fecha desde Fecha hasta Nº socios internacionales Presupuesto total RIS 3 Tecnología base Link a ficha Resumen del proyecto ¿Lanza convocatoria cascade funding?
Scroll al inicio